Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Isotopic evidence of arbuscular mycorrhizal cheating in a grassland gentian species.

Identifieur interne : 000120 ( Main/Exploration ); précédent : 000119; suivant : 000121

Isotopic evidence of arbuscular mycorrhizal cheating in a grassland gentian species.

Auteurs : Kenji Suetsugu [Japon] ; Jun Matsubayashi [Japon] ; Nanako O. Ogawa [Japon] ; Satoe Murata [Japon] ; Risa Sato [Japon] ; Hiroshi Tomimatsu [Japon]

Source :

RBID : pubmed:32172377

Descripteurs français

English descriptors

Abstract

All orchids and pyroloids are mycoheterotrophic at least in the early stage. Many species are predisposed to mycoheterotrophic nutrition even in the adult stage, due to the initial mycoheterotrophy during germination. Although other green plants, such as gentian species, also produce numerous minute seeds, whose germination may depend on fungal associations to meet C demands, physiological evidence for partial mycoheterotrophy in the adult stage is lacking for most candidate taxa. Here, we compared the natural abundances of 13C and 15N isotopes in the AM-associated gentian species Pterygocalyx volubilis growing in high-light-intensity habitats with those of co-occurring autotrophic C3 and C4 plants and AM fungal spores. We found that P. volubilis was significantly enriched in 13C compared with the surrounding C3 plants, which suggests the transfer of some C from the surrounding autotrophic plants through shared AM networks. In addition, the intermediate δ15N values of P. volubilis, between those of autotrophic plants and AM fungal spores, provide further evidence for partial mycoheterotrophy in P. volubilis. Although it is often considered that light deficiency selects partial mycoheterotrophy, we show that partial mycoheterotrophy in AM-forming plants can evolve even under light-saturated conditions. The fact that there have been relatively few descriptions of partial mycoheterotrophy in AM plants may not necessarily reflect the rarity of such associations. In conclusion, partial mycoheterotrophy in AM plants may be more common than hitherto believed.

DOI: 10.1007/s00442-020-04631-x
PubMed: 32172377


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Isotopic evidence of arbuscular mycorrhizal cheating in a grassland gentian species.</title>
<author>
<name sortKey="Suetsugu, Kenji" sort="Suetsugu, Kenji" uniqKey="Suetsugu K" first="Kenji" last="Suetsugu">Kenji Suetsugu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan. kenji.suetsugu@gmail.com.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biology, Graduate School of Science, Kobe University, Kobe</wicri:regionArea>
<wicri:noRegion>Kobe</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Matsubayashi, Jun" sort="Matsubayashi, Jun" uniqKey="Matsubayashi J" first="Jun" last="Matsubayashi">Jun Matsubayashi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa</wicri:regionArea>
<wicri:noRegion>Kanagawa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ogawa, Nanako O" sort="Ogawa, Nanako O" uniqKey="Ogawa N" first="Nanako O" last="Ogawa">Nanako O. Ogawa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa</wicri:regionArea>
<wicri:noRegion>Kanagawa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Murata, Satoe" sort="Murata, Satoe" uniqKey="Murata S" first="Satoe" last="Murata">Satoe Murata</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Science, Yamagata University, Yamagata, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Faculty of Science, Yamagata University, Yamagata</wicri:regionArea>
<wicri:noRegion>Yamagata</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sato, Risa" sort="Sato, Risa" uniqKey="Sato R" first="Risa" last="Sato">Risa Sato</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Science, Yamagata University, Yamagata, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Faculty of Science, Yamagata University, Yamagata</wicri:regionArea>
<wicri:noRegion>Yamagata</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tomimatsu, Hiroshi" sort="Tomimatsu, Hiroshi" uniqKey="Tomimatsu H" first="Hiroshi" last="Tomimatsu">Hiroshi Tomimatsu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Science, Yamagata University, Yamagata, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Faculty of Science, Yamagata University, Yamagata</wicri:regionArea>
<wicri:noRegion>Yamagata</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32172377</idno>
<idno type="pmid">32172377</idno>
<idno type="doi">10.1007/s00442-020-04631-x</idno>
<idno type="wicri:Area/Main/Corpus">000143</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000143</idno>
<idno type="wicri:Area/Main/Curation">000143</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000143</idno>
<idno type="wicri:Area/Main/Exploration">000143</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Isotopic evidence of arbuscular mycorrhizal cheating in a grassland gentian species.</title>
<author>
<name sortKey="Suetsugu, Kenji" sort="Suetsugu, Kenji" uniqKey="Suetsugu K" first="Kenji" last="Suetsugu">Kenji Suetsugu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan. kenji.suetsugu@gmail.com.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biology, Graduate School of Science, Kobe University, Kobe</wicri:regionArea>
<wicri:noRegion>Kobe</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Matsubayashi, Jun" sort="Matsubayashi, Jun" uniqKey="Matsubayashi J" first="Jun" last="Matsubayashi">Jun Matsubayashi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa</wicri:regionArea>
<wicri:noRegion>Kanagawa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ogawa, Nanako O" sort="Ogawa, Nanako O" uniqKey="Ogawa N" first="Nanako O" last="Ogawa">Nanako O. Ogawa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa</wicri:regionArea>
<wicri:noRegion>Kanagawa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Murata, Satoe" sort="Murata, Satoe" uniqKey="Murata S" first="Satoe" last="Murata">Satoe Murata</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Science, Yamagata University, Yamagata, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Faculty of Science, Yamagata University, Yamagata</wicri:regionArea>
<wicri:noRegion>Yamagata</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sato, Risa" sort="Sato, Risa" uniqKey="Sato R" first="Risa" last="Sato">Risa Sato</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Science, Yamagata University, Yamagata, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Faculty of Science, Yamagata University, Yamagata</wicri:regionArea>
<wicri:noRegion>Yamagata</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tomimatsu, Hiroshi" sort="Tomimatsu, Hiroshi" uniqKey="Tomimatsu H" first="Hiroshi" last="Tomimatsu">Hiroshi Tomimatsu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of Science, Yamagata University, Yamagata, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Faculty of Science, Yamagata University, Yamagata</wicri:regionArea>
<wicri:noRegion>Yamagata</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon Isotopes (MeSH)</term>
<term>Gentiana (MeSH)</term>
<term>Grassland (MeSH)</term>
<term>Mycorrhizae (MeSH)</term>
<term>Orchidaceae (MeSH)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Gentiana (MeSH)</term>
<term>Isotopes du carbone (MeSH)</term>
<term>Mycorhizes (MeSH)</term>
<term>Orchidaceae (MeSH)</term>
<term>Prairie (MeSH)</term>
<term>Symbiose (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Carbon Isotopes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gentiana</term>
<term>Grassland</term>
<term>Mycorrhizae</term>
<term>Orchidaceae</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Gentiana</term>
<term>Isotopes du carbone</term>
<term>Mycorhizes</term>
<term>Orchidaceae</term>
<term>Prairie</term>
<term>Symbiose</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">All orchids and pyroloids are mycoheterotrophic at least in the early stage. Many species are predisposed to mycoheterotrophic nutrition even in the adult stage, due to the initial mycoheterotrophy during germination. Although other green plants, such as gentian species, also produce numerous minute seeds, whose germination may depend on fungal associations to meet C demands, physiological evidence for partial mycoheterotrophy in the adult stage is lacking for most candidate taxa. Here, we compared the natural abundances of
<sup>13</sup>
C and
<sup>15</sup>
N isotopes in the AM-associated gentian species Pterygocalyx volubilis growing in high-light-intensity habitats with those of co-occurring autotrophic C
<sub>3</sub>
and C
<sub>4</sub>
plants and AM fungal spores. We found that P. volubilis was significantly enriched in
<sup>13</sup>
C compared with the surrounding C
<sub>3</sub>
plants, which suggests the transfer of some C from the surrounding autotrophic plants through shared AM networks. In addition, the intermediate δ
<sup>15</sup>
N values of P. volubilis, between those of autotrophic plants and AM fungal spores, provide further evidence for partial mycoheterotrophy in P. volubilis. Although it is often considered that light deficiency selects partial mycoheterotrophy, we show that partial mycoheterotrophy in AM-forming plants can evolve even under light-saturated conditions. The fact that there have been relatively few descriptions of partial mycoheterotrophy in AM plants may not necessarily reflect the rarity of such associations. In conclusion, partial mycoheterotrophy in AM plants may be more common than hitherto believed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">32172377</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>04</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>192</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2020</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Isotopic evidence of arbuscular mycorrhizal cheating in a grassland gentian species.</ArticleTitle>
<Pagination>
<MedlinePgn>929-937</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-020-04631-x</ELocationID>
<Abstract>
<AbstractText>All orchids and pyroloids are mycoheterotrophic at least in the early stage. Many species are predisposed to mycoheterotrophic nutrition even in the adult stage, due to the initial mycoheterotrophy during germination. Although other green plants, such as gentian species, also produce numerous minute seeds, whose germination may depend on fungal associations to meet C demands, physiological evidence for partial mycoheterotrophy in the adult stage is lacking for most candidate taxa. Here, we compared the natural abundances of
<sup>13</sup>
C and
<sup>15</sup>
N isotopes in the AM-associated gentian species Pterygocalyx volubilis growing in high-light-intensity habitats with those of co-occurring autotrophic C
<sub>3</sub>
and C
<sub>4</sub>
plants and AM fungal spores. We found that P. volubilis was significantly enriched in
<sup>13</sup>
C compared with the surrounding C
<sub>3</sub>
plants, which suggests the transfer of some C from the surrounding autotrophic plants through shared AM networks. In addition, the intermediate δ
<sup>15</sup>
N values of P. volubilis, between those of autotrophic plants and AM fungal spores, provide further evidence for partial mycoheterotrophy in P. volubilis. Although it is often considered that light deficiency selects partial mycoheterotrophy, we show that partial mycoheterotrophy in AM-forming plants can evolve even under light-saturated conditions. The fact that there have been relatively few descriptions of partial mycoheterotrophy in AM plants may not necessarily reflect the rarity of such associations. In conclusion, partial mycoheterotrophy in AM plants may be more common than hitherto believed.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Suetsugu</LastName>
<ForeName>Kenji</ForeName>
<Initials>K</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-7943-4164</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan. kenji.suetsugu@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Matsubayashi</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ogawa</LastName>
<ForeName>Nanako O</ForeName>
<Initials>NO</Initials>
<AffiliationInfo>
<Affiliation>Department of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Murata</LastName>
<ForeName>Satoe</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Science, Yamagata University, Yamagata, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sato</LastName>
<ForeName>Risa</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Science, Yamagata University, Yamagata, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tomimatsu</LastName>
<ForeName>Hiroshi</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Faculty of Science, Yamagata University, Yamagata, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>17H05016</GrantID>
<Agency>Japan Society for the Promotion of Science</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>17J04991</GrantID>
<Agency>Japan Society for the Promotion of Science</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>18K19356</GrantID>
<Agency>Japan Society for the Promotion of Science</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002247">Carbon Isotopes</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002247" MajorTopicYN="N">Carbon Isotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030012" MajorTopicYN="Y">Gentiana</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065948" MajorTopicYN="N">Grassland</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="Y">Mycorrhizae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029595" MajorTopicYN="Y">Orchidaceae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Gentianaceae</Keyword>
<Keyword MajorTopicYN="N">Mixotrophy</Keyword>
<Keyword MajorTopicYN="N">Mycoheterotrophy</Keyword>
<Keyword MajorTopicYN="N">Mycorrhiza</Keyword>
<Keyword MajorTopicYN="N">Stable isotope</Keyword>
<Keyword MajorTopicYN="N">Symbiosis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32172377</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-020-04631-x</ArticleId>
<ArticleId IdType="pii">10.1007/s00442-020-04631-x</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Plant Sci. 2006 Jun;11(6):263-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16697245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2013 Apr;100(4):712-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23535773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rapid Commun Mass Spectrom. 2011 Sep 15;25(17):2538-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21910288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Mar;205(4):1492-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25615559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2007 Mar;151(2):206-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17089139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2019 Sep;28(18):4290-4299</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31448451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Feb;213(3):1418-1427</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27739593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2011 Jul;98(7):1148-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21712419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Isotopes Environ Health Stud. 2008 Dec;44(4):393-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19061069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1989 Sep;4(9):258-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21227362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Oct;188(2):590-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20618915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Jul;211(1):11-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26832994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2013 Jul;23(5):411-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23422950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2017 Mar;26(6):1652-1669</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28099773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 May;166(2):639-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15819926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2019 Jul 8;123(7):1167-1177</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30865264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2016 Jul;26(5):417-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26846147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2010 Nov;74(2):336-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20722732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Apr;231(5):1137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20179964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Apr;202(2):606-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24444001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2018 Sep;105(9):1595-1600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30129024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2004 Sep 7;271(1550):1799-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15315895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2010 May 7;277(1686):1333-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20053652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Sep 26;419(6905):389-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12353033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2010 Aug;97(8):1272-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21616879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2019 Feb;189(2):375-383</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30673856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Feb;14(2):64-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19162524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2011 Oct;21(7):631-639</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21424804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2020 Jan 27;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31985062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2008 May 7;275(1638):1029-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18270159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2017 Feb;20(2):246-263</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28032461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Oct;192(1):188-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21627666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1991 Jul;87(2):198-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2002 Jul;132(2):181-187</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1991 Dec;88(4):457-462</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28312613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Oct;212(2):314-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27400967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1987 Dec;85(4):1143-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jun;156(2):952-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21527422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2020 May;226(4):960-966</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31837155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2014 Nov;127(6):685-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25179210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Feb;189(3):790-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20964694</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<country name="Japon">
<noRegion>
<name sortKey="Suetsugu, Kenji" sort="Suetsugu, Kenji" uniqKey="Suetsugu K" first="Kenji" last="Suetsugu">Kenji Suetsugu</name>
</noRegion>
<name sortKey="Matsubayashi, Jun" sort="Matsubayashi, Jun" uniqKey="Matsubayashi J" first="Jun" last="Matsubayashi">Jun Matsubayashi</name>
<name sortKey="Murata, Satoe" sort="Murata, Satoe" uniqKey="Murata S" first="Satoe" last="Murata">Satoe Murata</name>
<name sortKey="Ogawa, Nanako O" sort="Ogawa, Nanako O" uniqKey="Ogawa N" first="Nanako O" last="Ogawa">Nanako O. Ogawa</name>
<name sortKey="Sato, Risa" sort="Sato, Risa" uniqKey="Sato R" first="Risa" last="Sato">Risa Sato</name>
<name sortKey="Tomimatsu, Hiroshi" sort="Tomimatsu, Hiroshi" uniqKey="Tomimatsu H" first="Hiroshi" last="Tomimatsu">Hiroshi Tomimatsu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000120 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000120 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32172377
   |texte=   Isotopic evidence of arbuscular mycorrhizal cheating in a grassland gentian species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32172377" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020